Aquatain® Mosquito Formulation (AMF) for the control of immature Anopheles gambiae sensu stricto and Anopheles arabiensis: dose-responses, persistence and sub-lethal effects (2024)

1. Killeen GF, Fillinger U, Kiche I, Gouagna LC, Knols BG. Eradication of Anopheles gambiae from Brazil: lessons for malaria control in Africa? Lancet Infect Dis. 2002;2:618–627. doi:10.1016/S1473-3099(02)00397-3. [PubMed] [CrossRef] [Google Scholar]

2. Walker K, Lynch M. Contributions of Anopheles larval control to malaria suppression in tropical Africa: review of achievements and potential. Med Vet Entomol. 2007;21:2–21. doi:10.1111/j.1365-2915.2007.00674.x. [PubMed] [CrossRef] [Google Scholar]

3. Soper FL. Paris green in the eradication of Anopheles gambiae: Brazil, 1940; Egypt, 1945. Mosq News. 1966;26:470–476. [Google Scholar]

4. Kitron U, Spielman A. Suppression of transmission of malaria through source reduction: antianopheline measures applied in Israel, the United States, and Italy. Rev Infect Dis. 1989;11:391–406. doi:10.1093/clinids/11.3.391. [PubMed] [CrossRef] [Google Scholar]

5. Keiser J, Singer BH, Utzinger J. Reducing the burden of malaria in different eco-epidemiological settings with environmental management: a systematic review. Lancet Infect Dis. 2005;5:695–708. doi:10.1016/S1473-3099(05)70268-1. [PubMed] [CrossRef] [Google Scholar]

6. Hagstrum DW, Mulla MS. Petroleum oils as mosquito larvicides and pupicides. I. Correlation of physicochemical properties with biological activity. J Econ Entomol. 1968;61:220–225. [PubMed] [Google Scholar]

7. Micks DW, Chambers GV, Jennings J, Rehmet A. Mosquito control agents derived from petroleum hydrocarbons. I. Laboratory effectiveness. J Econ Entomol. 1967;60:427–429. [PubMed] [Google Scholar]

8. Micks DW, Chambers GV. Efficacy of specificially-developed petroleum hydrocarbons as Anopheles control agents. Am J Trop Med Hyg. 1974;23:270–273. [PubMed] [Google Scholar]

9. Freeborn SB, Atsatt RF. The effects of petroleum oils on mosquito larva. J Econ Entomol. 1918;2:299–307. [Google Scholar]

10. Richards AG. Differentiation between toxic and suffocating effects of petroleum oils on larvae of the house mosquito (Culex pipiens L.) (Diptera) Trans Amer Entomol. 1941;67:161–193. [Google Scholar]

11. Mulla MS, Darwazeh HA. Efficacy of petroleum larvicidal oils and their impact on some aquatic nontarget organisms. Proc Calif Mosq Cont Assoc. 1981;39:84–87. [Google Scholar]

12. Darwazeh HA, Fox RC, Ramke DJ. Efficacy of fortified petroleum oils as mosquito larvicides in Irrigated pastures. Proc Calif Mosq Cont Assoc. 1972;39:46–48. [Google Scholar]

13. Murray DRP. Problems concerning the efficiency of oils as mosquito larvicides. II. The spreading power of oils and methods of increasing it. Bull Entomol Res. 1940;30:211–236. doi:10.1017/S000748530000451X. [CrossRef] [Google Scholar]

14. Toms BA. Mosquito control: an investigation of natural surface films in relation to spreading of larvicidal oils upon water. Bull Entomol Res. 1950;40:503–510. doi:10.1017/S000748530002441X. [CrossRef] [Google Scholar]

15. Mozley SC, Butlerz MG. Effects of crude oil on aquatic insects of tundra ponds. Arctic. 1978;31:229–241. doi:10.14430/arctic2655. [CrossRef] [Google Scholar]

16. Lopes A, da Rosa-Osman SM, Piedade MTF. Effects of crude oil on survival, morphology, and anatomy of two aquatic macrophytes from the Amazon floodplains. Hydrobiologia. 2009;636:295–305. doi:10.1007/s10750-009-9959-6. [CrossRef] [Google Scholar]

17. Garrett WD, White SA. Mosquito control with monomolecular organic surface films: I - selection of optimum film-forming agents. Mosq News. 1977;37:344–348. [Google Scholar]

18. Nayar JK, Ali A. A review of monomolecular surface films as larvicides and pupicides of mosquitoes. J Vector Ecol. 2003;28:190–199. [PubMed] [Google Scholar]

19. Reiter P, McMullen AI. The action of lecithin monolayers on mosquitoes I. General observations. General observations. Ann Trop Med Parasitol. 1978;72:163–168. [PubMed] [Google Scholar]

20. Reiter P. The action of lecithin monolayers on mosquitoes II. Action on the respiratory structures. Ann Trop Med Parasitol. 1978;72:169–176. [PubMed] [Google Scholar]

21. Levy R, Chizzonite JJ, Garrett WD, Miller TW., Jr Efficacy of the organic surface film isostearyl alcohol containing two oxyethylene groups for control of Culex and Psorophora mosquitoes: laboratory and field studies. Mosq News. 1982;41:1–11. [Google Scholar]

22. Poopathi S, Abidha S. Mosquitocidal bacterial toxins (Bacillus sphaericus and Bacillus thuringiensis serovar israelensis): Mode of action, cytopathological effects and mechanism of resistance. J Physiol Pathophysiol. 2010;1:22–38. [Google Scholar]

23. Mian LS, Mulla MS. Biological and environmental dynamics of insect growth regulators (IGRs) as used against diptera of public health importance. Residue Rev. 1982;84:28–35. [PubMed] [Google Scholar]

24. Aquatain Products Liquid Innovations. http://www.aquatain.com/Aquatain-AMF.html

25. Reiter P. The action of lecithin monolayers on mosquitoes III. Studies in irrigated rice-fields in Kenya. Trop Med. 1979;74:541–557. [PubMed] [Google Scholar]

26. Batra CP, Mittal PK, Adak T, Subbarao SK. Efficacy of Agnique MMF monomolecular surface film against Anopheles stephensi breeding in urban habitats in India. J Am Mosq Control Assoc. 2006;22:426–432. doi:10.2987/8756-971X(2006)22[426:EOAMMS]2.0.CO;2. [PubMed] [CrossRef] [Google Scholar]

27. Karanja DMS, Githeko AK, Vulule JM. Small-scale field evaluation of the monomolecular surface film Arosurf MSF’ against Anopheles arabiensis Patton. Acta Trop. 1994;56:365–369. doi:10.1016/0001-706X(94)90107-4. [PubMed] [CrossRef] [Google Scholar]

28. Mulla MS, Darwazeh HA, Luna LL. Monolayer films as mosquito control agents and their effects on nontarget organisms. Depart Entomol. 1983;43:489–496. [Google Scholar]

29. Levy R, Chizzonite JJ, Garrett WD, Miller TW., Jr Ground and aerial application of a monomolecular organic surface film to control salt-marsh mosquitoes in natural habitats of Southwestern Florida. Mosq News. 1981;41:219–301. [Google Scholar]

30. Bukhari T, Takken W, Githeko AK, Koenraadt CJ. Efficacy of aquatain, a monomolecular film, for the control of malaria vectors in rice paddies. PLoS One. 2011;6:e21713. doi:10.1371/journal.pone.0021713. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Bukhari T, Knols BG. Efficacy of Aquatain, a monomolecular surface film, against the malaria vectors Anopheles stephensi and An. gambiae s.s. in the laboratory. Am J Trop Med Hyg. 2009;80:758–763. [PubMed] [Google Scholar]

32. WHO . Guidelines for Laboratory and Field Testing of Mosquito Larvicides. 2005. World Health Organization Communicable Disease Control, Prevention and Eradication. WHO Pesticide Evaluation Scheme. WHO/CDS/WHOPES/GCDPP/2005.2013. [Google Scholar]

33. Dugassa S, Lindh JM, Torr SJ, Oyieke F, Lindsay SW, Fillinger U. Electric nets and sticky materials for analysing oviposition behaviour of gravid malaria vectors. Malar J. 2012;11:374. doi:10.1186/1475-2875-11-374. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Das S, Garver L, Dimopoulos G. Protocol for mosquito rearing (A. gambiae) J Vis Exp. 2007;5:221. [PMC free article] [PubMed] [Google Scholar]

35. Araujo MS, Gil LHS, e-Silva AA. Larval food quantity affects development time, survival and adult biological traits that influence the vectorial capacity of Anopheles darlingi under laboratory conditions. Malar J. 2012;11:261. doi:10.1186/1475-2875-11-261. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Jawara M, Pinder M, Drakeley CJ, Nwakanma DC, Jallow E, Bogh C, Lindsay SW, Conway DJ. Dry season ecology of Anopheles gambiae complex mosquitoes in The Gambia. Malar J. 2008;7:156. doi:10.1186/1475-2875-7-156. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Govoetchan R, Gnanguenon V, Ogouwale E, Oke-Agbo F, Azondekon R, Sovi A, Attolou R, Badirou K, Youssouf RA, Osse R, Akogbeto M. Dry season refugia for anopheline larvae and mapping of the seasonal distribution in mosquito larval habitats in Kandi, northeastern Benin. Parasit Vectors. 2014;7:137. doi:10.1186/1756-3305-7-137. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Mala AO, Irungu LW, Shililu JI, Muturi EJ, Mbogo CC, Njagi JK, Githure JI. Dry season ecology of Anopheles gambiae complex mosquitoes at larval habitats in two traditionally semi-arid villages in Baringo, Kenya. Parasit Vectors. 2011;4:25. doi:10.1186/1756-3305-4-25. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Fillinger U, Sonye G, Killeen GF, Knols BG, Becker N. The practical importance of permanent and semipermanent habitats for controlling aquatic stages of Anopheles gambiae sensu lato mosquitoes: operational observations from a rural town in western Kenya. Trop Med Int Health. 2004;9:1274–1289. doi:10.1111/j.1365-3156.2004.01335.x. [PubMed] [CrossRef] [Google Scholar]

40. Fillinger U, Sombroek H, Majambere S, van Loon E, Takken W, Lindsay SW. Identifying the most productive breeding sites for malaria mosquitoes in The Gambia. Malar J. 2009;8:62. doi:10.1186/1475-2875-8-62. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Abbott WS. A method of computing the effectiveness of an insecticide. J Am Mosq Control Assoc. 1987;3:302–303. [PubMed] [Google Scholar]

42. Katz MH. Multivariable analysis: a practical guide for clinicians. 2. New York: Cambridge University Press; 2006. pp. 11–13. [Google Scholar]

43. Clements AN. The biology of mosquitoes. Development nutrition and reproduction. Reprinted by CABI Pub. 2000;1:76–79. [Google Scholar]

44. Webb CE, Russell RC. Does the monomolecular film Aquatain Mosquito Formula provide effective control of container-breeding mosquitoes in Australia? J Am Mosq Control Assoc. 2012;28:53–58. doi:10.2987/11-6193.1. [PubMed] [CrossRef] [Google Scholar]

45. Cuker BE. Field experiment on the influences of suspended clay and P on the plankton of a small lake1. Limnol Oceanogr. 1987;32:840–847. doi:10.4319/lo.1987.32.4.0840. [CrossRef] [Google Scholar]

46. Paaijmans KP, Takken W, Githeko AK, Jacobs AF. The effect of water turbidity on the near-surface water temperature of larval habitats of the malaria mosquito Anopheles gambiae. Int J Biometeorol. 2008;52:747–753. doi:10.1007/s00484-008-0167-2. [PubMed] [CrossRef] [Google Scholar]

47. Gouagna LC, Rakotondranary M, Boyer S, Lemperiere G, Dehecq JS, Fontenille D. Abiotic and biotic factors associated with the presence of Anopheles arabiensis immatures and their abundance in naturally occurring and man-made aquatic habitats. Parasit Vectors. 2012;5:96. doi:10.1186/1756-3305-5-96. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Mereta ST, Yewhalaw D, Boets P, Ahmed A, Duchateau L, Speybroeck N, Vanwambeke SO, Legesse W, De Meester L, Goethals PL. Physico-chemical and biological characterization of anopheline mosquito larval habitats (Diptera: Culicidae): implications for malaria control. Parasit Vectors. 2013;6:320. doi:10.1186/1756-3305-6-320. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Paaijmans KP, Wandago MO, Githeko AK, Takken W. Unexpected high losses of Anopheles gambiae larvae due to rainfall. PLoS One. 2007;2:e1146. doi:10.1371/journal.pone.0001146. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Kamal HA, Khater EIM. The biological effects of the insect growth regulators; pyriproxyfen and diflubenzuron on the mosquito Aedes aegypti. J Egypt Soc Parasitol. 2010;40:565–574. [PubMed] [Google Scholar]

51. Loh PY, Yap HH. Laboratory studies on the efficacy and sublethal effects of an insect growth regulator, pyriproxyfen (S-31183) against Aedes aegypti (Linnaeus) Trop Biomed. 1989;6:7–12. [Google Scholar]

52. Sanil D, Shetty NJ. The effect of sublethal exposure to temephos and propoxur on reproductive fitness and its influence on circadian rhythms of pupation and adult emergence in Anopheles stephensi Liston—a malaria vector. Parasitol Res. 2012;111:423–432. doi:10.1007/s00436-012-2857-2. [PubMed] [CrossRef] [Google Scholar]

53. Robert LL, Olson JK. Effects of sublethal dosages of insecticides on Culex quinquefasciatus. J Am Mosq Control Assoc. 1989;5:239–246. [PubMed] [Google Scholar]

54. Wang LY, Jaal Z. Sublethal effects of Bacillus thuringiensis H-14 on the survival rate, longevity, fecundity and F1 generation developmental period of Aedes aegypti. Dengue Bull. 2005;29:192–196. [Google Scholar]

55. Antonio GE, Sanchez D, Williams T, Marina CF. Paradoxical effects of sublethal exposure to the naturally derived insecticide spinosad in the dengue vector mosquito, Aedes aegypti. Pest Manag Sci. 2009;65:323–326. doi:10.1002/ps.1683. [PubMed] [CrossRef] [Google Scholar]

56. Tomé HW, Tales V, Pascini TV, Dângelo RA, Guedes RN, Martins GF. Survival and swimming behavior of insecticide-exposed larvae and pupae of the yellow fever mosquito Aedes aegypti. Parasit Vectors. 2014;7:195. doi:10.1186/1756-3305-7-195. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Worrall E, Fillinger U. Large-scale use of mosquito larval source management for malaria control in Africa: a cost analysis. Malar J. 2011;10:338. doi:10.1186/1475-2875-10-338. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Oliver SV, Brooke BD. The effect of larval nutritional deprivation on the life history and DDT resistance phenotype in laboratory strains of the malaria vector Anopheles arabiensis. Malar J. 2013;12:44. doi:10.1186/1475-2875-12-44. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Padmanabha H, Lord CC, Lounibos LP. Temperature induces trade-offs between development and starvation resistance in Aedes aegypti (L.) larvae. Med Vet Entomol. 2011;25:445–453. doi:10.1111/j.1365-2915.2011.00950.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Padmanabha H, Soto E, Mosquera M, Lord CC, Lounibos LP. Ecological links between water storage behaviours and Aedes aegypti production: implications for dengue vector control in variable climates. Ecohealth. 2010;7:78–90. doi:10.1007/s10393-010-0301-6. [PubMed] [CrossRef] [Google Scholar]

61. Lehmann T, Dalton R, Kim EH, Dahl E, Diabate A, Dabire R, Dujardin JP. Genetic contribution to variation in larval development time, adult size, and longevity of starved adults of Anopheles gambiae. Infect Genet Evol. 2006;6:410–416. doi:10.1016/j.meegid.2006.01.007. [PubMed] [CrossRef] [Google Scholar]

62. Takken W, Smallegange RC, Vigneau AJ, Johnston V, Brown M, Mordue-Luntz AJ, Billingsley PF. Larval nutrition differentially affects adult fitness and Plasmodium development in the malaria vectors Anopheles gambiae and Anopheles stephensi. Parasit Vectors. 2013;6:345. doi:10.1186/1756-3305-6-345. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Telang A, Frame L, Brown MR. Larval feeding duration affects ecdysteroid levels and nutritional reserves regulating pupal commitment in the yellow fever mosquito Aedes aegypti (Diptera: Culicidae) J Exp Biol. 2007;210:854–864. doi:10.1242/jeb.02715. [PubMed] [CrossRef] [Google Scholar]

64. Yoshioka M, Couret J, Kim F, McMillan J, Burkot TR, Dotson EM, Kitron U, Vazquez-Prokopec GM. Diet and density dependent competition affect larval performance and oviposition site selection in the mosquito species Aedes albopictus (Diptera: Culicidae) Parasit Vectors. 2012;5:225. doi:10.1186/1756-3305-5-225. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Corbet SA, Tiley C, Moorhouse T, Giam C, Pursglove S, Raby J, Rich M. Surface films as mosquito larvicides: partitioning the mode of action. Entomol. 2000;94:295–307. [Google Scholar]

66. Koenraadt CJ, Kormaksson M, Harrington LC. Effects of inbreeding and genetic modification on Aedes aegypti larval competition and adult energy reserves. Parasit Vectors. 2010;3:92. doi:10.1186/1756-3305-3-92. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. Briegel H. Fecundity, metabolism, and body size in Anopheles (Diptera: Culicidae), vectors of malaria. J Med Entomol. 1990;27:839–850. [PubMed] [Google Scholar]

68. Steinwascher K. Relationship between pupal mass and adult survivorship and fecundity for Aedes aegypti. Environ Entomol. 1982;11:150–153. [Google Scholar]

69. Ameneshewa B, Service MW. The relationship between female body size and survival rate of the malaria vector Anopheles arabiensis in Ethiopia. Med Vet Entomol. 1996;10:170–172. doi:10.1111/j.1365-2915.1996.tb00724.x. [PubMed] [CrossRef] [Google Scholar]

Aquatain® Mosquito Formulation (AMF) for the control of immature Anopheles gambiae sensu stricto and Anopheles arabiensis: dose-responses, persistence and sub-lethal effects (2024)
Top Articles
Latest Posts
Article information

Author: Amb. Frankie Simonis

Last Updated:

Views: 5621

Rating: 4.6 / 5 (76 voted)

Reviews: 83% of readers found this page helpful

Author information

Name: Amb. Frankie Simonis

Birthday: 1998-02-19

Address: 64841 Delmar Isle, North Wiley, OR 74073

Phone: +17844167847676

Job: Forward IT Agent

Hobby: LARPing, Kitesurfing, Sewing, Digital arts, Sand art, Gardening, Dance

Introduction: My name is Amb. Frankie Simonis, I am a hilarious, enchanting, energetic, cooperative, innocent, cute, joyous person who loves writing and wants to share my knowledge and understanding with you.